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ABSTRACT The work presented in this paper proposes a novel approach to tracking a specific vehicle
over the video streams published by the collaborating traffic surveillance cameras. In recent years, smart,
effective transportation systems and intelligent traffic management applications are among the topics that
have been given importance by various institutions. Developing a scalable, fault-tolerant, and resilient traffic
monitoring system that retrieves video chunks with the desired query is challenging. For these challenging
problems, stream processing and data retrieval systems have been developed over the years. However, there
are still existing shortcomings between users and retrieval systems. This paper investigates the problem of
retrieving video chunks by key-value query based on publish/subscribe model. Thus, we propose a hybrid of
an asynchronous and synchronous communicationmechanism for the Event-BasedMicroservice framework.
We aim to develop generic techniques for better utilization of existing platforms. In the proposed framework,
(i) first of all, microservices detect vehicles and extract their type, color, and speed features, and stored them
in themetadata repository. (ii)Microservices publish each feature as events (iii) Other microservices self-join
subscribe to those events, which leads to more events being published by combing all the possibilities: type-
color, type-speed, color-speed, and type-color-speed. Finally, (iv) the system visualizes the query result and
system status in real-time. When the user has selected color or/and a type or/and a speed feature, the system
will return the best-matched vehicles without re-processing the videos. Experimental results show that our
proposed system filters messages in real-time and supports easy integration of new microservices with the
existing system.

INDEX TERMS Intelligent transportation system (ITS), microservices, publish-subscribe system, stream
computing, vehicle detection.

I. INTRODUCTION
Intelligent Transportation System (ITS) is becoming perva-
sive and actively used in recent years to increase traffic effi-
ciency, decrease traffic congestion, and provide road safety.
ITS uses communication technologies such as various sensors
and cameras to produce useful information for operators.
Implementing electronics, wireless and communication tech-
nologies on roads is costly. Therefore, surveillance camera
systems such as Closed-circuit television (CCTV) and IP
cameras have become widespread and actively used. The
operators monitor surveillance camera feeds in real-time or
recorded video. The need for access to up-to-date, accurate,
and relevant data increases day by day. For this reason, how to
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retrieve and distribute live video surveillance streams to users
as per their interest promptly is one of the biggest challenges.

Current video retrieval studies are mostly based on Text-
based and Content-based indexing methods. Content-Based
image retrieval (CBIR) is also known as query by image.
In the CBIR method, the system extract features from each
image and stores them in a database. When the user queries
an image, the feature vector of the query image is extracted.
The similarity between the feature vector of the query image
and images in the database is measured. However, this makes
it very slow to be used in real-time [1] due to working with
the high dimensional vectors. Then, the system returns the
images that most closely resemble the query image [2].

Unlike CBIR, the Text-Based Image Retrieval (TBIR)
method annotates the images with file name, image size,
dimension, and format. Then, it stores them in a database [3].
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The first disadvantage of the TBIR is creating metadata
manually for an extensive database is impractical. The sec-
ond drawback is: How to find an accurate representation
for both text captions and video data? Various methods
for representing text for encoding captions [4]–[8] depend
on the annotator. However, the annotator can give differ-
ent explanations for similar images. Also, text captions will
be language-dependent [9]. The common feature of video
retrieval by query systems in the literature is that when the
query incomes, the system initiates a search on the database’s
recorded data. We propose a topic-based query framework
to prevent data from being re-processed repeatedly (for each
query). Although video retrieval and automatic analysis sys-
tems exist for traffic monitoring applications and real-time
vehicle detection/tracking systems to the best of our knowl-
edge, no system allows us to collaboratively query vehicles in
real-time according to their physical characteristics key-value
matches with AND/OR combinations and publish result to
user. Unlike other studies, we do not search on recorded data.
We shorten the query time by pre-classification. When the
user has selected vehicle type and/or color and/or speed, the
system automatically subscribes to the relevant topic.

Thus, instead of watching the whole video, the operator
only examines the relevant part based on his query. Topics act
as filters, and each filter is based on the physical attributes of
the vehicles (type, color, and speed).

Publish/subscribe architecture has been used to filter and
distribute live video surveillance streams to users as per
their interest promptly. A pub/sub method is a messaging
paradigm where in charge of delivering events to interested
subscribers [10], [11]. Messages are produced to ‘‘topics’’
by publishers and consume by consumers who subscribe to
the topics. Event brokers and zookeepers that are part of
the system are responsible for routing messages between
producers and consumers. Cao et al. [12], a pub/sub system
introduced recently, and companies worldwide use it to create
event-driven microservices, real-time streaming applications,
and streaming data pipelines. Besides, it can handle real-time
data feeds and provides low-latency and a high-throughput
platform.

The contributions of this paper are summarized as follows:
• Thus, unlike other studies, the work presented here
is a distributed and collaborative computing environ-
ment capable of doing text-based queries over real-time
video streams. Vehicle detection done over the real-time
video streams is obtained by the collaboration of many
distributed services, and those services are grouped
according to their tasks. Some services get raw streams
from cameras and apply color filtering, and creates
sub-streams of colors. Some filters get color streams and
apply speed filtering and get sub-streams of color-speed.
Some other services get color-speed streams and apply
size filtering, and creates color-peed-size streams. All
the messaging between the collaborative filters is done
by publish-subscribe messaging paradigm enabling per-
sistent communication by using queue structures. This

approachmakes real-time videomonitoring scalable and
responsive.

• We design a hierarchical pub/sub microservice data
structure for retrieval of events

• We evaluate the proposed approach for vehicle detection
and color classification

• We developed an online user interface system for the
user to search vehicles and monitoring system status
dynamically.

The paper’s remainder is organized as follows: Section 2
presents related works about image processing-based vehicle
classification studies, color detection, and speed detection,
message delivery services, and publish/subscribe applications
on streaming data. In Section 3, the proposed method is
explained. Experiment results are shown in Section 4, and the
conclusion is given in Section 5.

II. RELATED WORK
The issue of managing and querying dynamic data is relevant
to several research areas. Most database management sys-
tems (DBMS) have failed to process video data dynamically.
There is no application or project-based work in the literature
based on retrieve video clips by text query in real-time. How-
ever, the study’s sub-techniques, vehicle type, color, speed
detection, text-video retrieval systems, and publish/subscribe
applications are listed and explained as follows.

A. VEHICLE CLASSIFICATION BASED ON TYPE, COLOR,
AND SPEED ATTRIBUTES
Vehicle detection and classification hold an essential place
in traffic surveillance systems and traffic safety. Therefore,
it has been an important area for researchers. Many studies
have been carried out with machine learning and deep learn-
ing algorithms in the field of vehicle classification [13], [14].

Wang et al. [15] aimed to classify cars and trucks
in real-time using faster region-convolutional neural net-
works (Faster R-CNN), reaching 90.65 and 90.51% accuracy.
Chakraborty et al. [16] presented traffic congestion detec-
tion over CCTV cameras in real-time using three different
approaches: you only look once (YOLO), deep convolutional
neural network (DCNN), and support vector machine (SVM)
to compare results. YOLO, DCCN, and SVM achieved
91.5%, 90.2%, and 85.2% accuracy. Kul et al. [17] used
binary image features for the classification of vehicles. These
features were tested with ANN, SVM, and Adaboost classifi-
cation algorithms and their accuracy values are 87.5, 81.6,
and 85.4 respectively. Chen et al. [18] conducted studies
to classify road vehicles using images obtained from CCTV
cameras; they compared two different classification algo-
rithms (SVM and random forests) using the vehicle’s shapes
and dimensions. With a total of four vehicle classes (cars,
minibusses, buses, and bicycles/motorcycles), the results
showed that SVM performed better than RF with an accuracy
of 96.26%. The highest misclassification rate emerged among
automobiles and minibusses, where both size and shape are
similar.
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Some current studies on the color detection of vehicles
are as follows. Wu et al. [19] proposed a real-time vehi-
cle color recognition system using You Only Look Once
(YOLO) 9000, a state-of-the-art, real-time object detection
system for intelligent transportation systems applications.
Vitabile et al. [20] proposed a dynamic HSV subfield of
processed images. Seng et al. [21] classified vehicle color
based on DCNN. In this method, vehicle colors are divided
into six categories (white, black, red, green, blue, and yellow),
and their dataset contains 3520 samples (2530 for training,
1000 for testing). They achieved 92.68% overall accuracy.
Rachmadi and Purnama [22] proposed a CNN-based vehicle
color detection system. The dataset used in the experiment
had five color classes, including black, blue, white, red, and
yellow and reached 94.47% overall accuracy. Chen et al. [23]
proposed a vehicle color recognition system in which their
goal was to select the region of interest (ROI) for recognizing
a vehicle’s dominant color. Linear Support Vector Machine
was used for the classification process, and they reached
91.89% overall accuracy. Şentaş et al. [24], [25] proposed
a vehicle type and color classification method; they classi-
fied buses, minivans, microbuses, SUVs, sedans, and trucks
using the YOLO classification algorithm and reached 97.90%
precision, 99.60% recall, and 89.29% IOU.

Vehicle speed detection is an essential measure for traffic
safety, and there are many studies in the literature to deter-
mine or estimate the speed of moving objects. These studies
usually either use extra hardware or solve the problem with
image processing techniques [26]. Wilder et al. [27], Pelegri
et al. [28], andKoide et al. [29] used computer software with
magnetic sensors to detect vehicle speed. Koide et al. [30]
proposed a laser-based continuous detection system to detect
speed in real-time. Osman and Chahine [31] used microwave
signals. Çelik and Kusetoǧullar? [32] proposed a method to
detect vehicles that violate the speed limit, but the system
showed poor performance when shadows increased in the
input video. Aliane et al. [33] proposed a system that warns
the driver in acoustic messages from the car speakers to the
driver when the speeding limit is violated. If the driver con-
tinues to infringe the speed limit, the vehicle’s GPS location
and the captured image are saved in the database. However,
it has been observed that this car may not be useful because
the cost of the equipment is prohibitive.

B. VIDEO RETRIEVAL SYSTEMS FROM TEXT QUERY
CBIR calculates the similarity between the query image and
sources in the database. TBIR annotates the images with a
filename, tag, image size, or dimension and stores them in
a database. Removal of stop words, stemming process are
next step. After the NLP step, the query is processed in the
database [34].

Patel [35] proposed a video retrieval system for automated
object-based indexing queries. Yang et al. [36] pro-
posed a retrieval based on object-specific characteristics.
Kantorov and Laptev [37] used the motion information of
object to characterize events to allow video clips retrieval.

Kar and Kanungo [7] proposed a query method based
on trajectory extraction and encoding relationships between
objects. In [2], [38], authors proposed a pre-trained Convo-
lutional Neural Network (CNN) to detect objects in video
frames. For query representation, they proposed complex
linguistic rules for extracting relevant parts from video data.
All these mentioned studies process the query with several
NLP methods and then perform a query on the database.

Liu et al. [39] proposed a system for retrieving vehicle
surveillance videos. Authors retrieve vehicle images by using
vehicle color similarity or/and type. They stored the vehicle’s
image and its color feature in a database.When a user selected
vehicles color or/and type feature, the system returns the
most similar images. However, this system is not working in
real-time. Baran et al. [40] proposed a method for vehicle
tracking systems. They specified model recognition, license
plate recognition, and color recognition features for detecting
vehicles. They extracted descriptor vectors and vocabulary
tree created.

Unlike these studies, in our proposed framework, we use
a key-value representative query rule for the video-retrieval
system in real-time. Thus, without high dimensional vectors,
NLP methods, or calculating similarity between query and
target, this method allows us to match video chunks with the
text in the concept space.

C. PUBLISH-SUBSCRIBE COMMUNICATION MODELS
Apache Kafka is a publish-subscribe distributed messag-
ing system and an event streaming platform [41]. In this
section, we observed how to leverage Apache Kafka and
implement a stream processing system in practice. Kafka
performs data ingestion tasks and makes it possible to per-
form machine learning algorithms in real-time. We aim
to improve the efficiency of a real-time stream data
process.

There are several hybrid pub/sub messaging pattern-based
machine learning methods in the literature. Kul et al. [42]
proposed a middleware system based on the publish-
subscribe messaging system. They classified the vehicles
as small, medium, and large, with the Neural Network,
AdaBoost, and SVM classifiers based on their size. They
got the best result with 95% accuracy from the NN algo-
rithm. Then, these classified vehicles were published over
the network for subscribers to obtain information via Java
Message Servers. Banno et al. [43] have developed a dis-
tributed event-based system for locally consuming locally
generatedmessages. Gascon-Samson et al. [44] have demon-
strated that a standard, dynamic, scalable, channel-based
publish-subscribe system can be implemented in the cloud.
They tested the efficiency of the system according to the num-
ber of clients active at the same time. Gray & Nutt proposed
publish-subscribe architecture that allows the distribution of
the data stream and querying it [45]. Zou et al. [46] proposed
a publish-subscribe model for real-time video surveillance
system by using wireless sensor networks.
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III. DATASET
Three publicly available data sets are used to determine vehi-
cle type (BIT-Vehicle) [47], color [48], and speed [49].

The Beijing Institute of Technology University Media
Computing and Intelligent Systems Laboratory staff and
shared academic studies [50] were preferred in determining
vehicle types. Includes 9,850 vehicle images in different
lighting conditions (about 10% night), different resolutions
(1600 × 1200 and 1920 × 1080), and different viewing
angles.

All vehicle images are presented in six categories: buses
(558), minibusses (883), trucks (822), vans (476), sedans
(5,922), and SUVs (1,392). Figure 1 contains some sample
images of the BIT Vehicle data set.

FIGURE 1. Sample images of the BIT vehicle data set.

The dataset published by Chen et al. [48] was used to
detect vehicle colors. In this data set, there are only images of
vehicles belonging to different colors. These are 3.442 black,
1.086 blue, 281 cyan, 3.046 gray, 482 green, 1.941 red,
4.742 white, and 581 yellow. Since the data set is unbalanced,
we used the Image Data Generator [50]. It artificially creates
the training images through different processing methods or
multiple operations such as random rotation, shifting, cutting,
and rotating. Thus, we have obtained training data as follows
3442 black, 3027 blue, 2939 gray, 3046 green, 3101 red,
3056 white, and 4742 yellow. Figure 2 contains some sample
images of the data set.

FIGURE 2. Sample images of vehicle color dataset.

Finally, the dataset published by Garibotto et al. [49]
was used to determine vehicle speed. A 5-megapixel CMOS
image sensor was used to capturing the videos. There are
20 videos with a resolution of 1920 × 1080 at 30.15 FPS.
Each video image has an XML file. This file contains actual
speed values (ground truth) obtained from a speedometer with
high precision based on an inductive loop detector, certified
by the Brazilian national metrology agency. In addition, there
are location values of the plates of the vehicles. Figure 3 con-
tains some sample images of the data set [49].

FIGURE 3. Sample images of vehicle speed dataset.

IV. PROPOSED METHOD
Figure 4 briefly shows the architecture of the proposed frame-
work. Surveillance video cameras capture and transmit data
to microservices. Microservices then filter vehicles based on
their type, color, speed and publish data into the relevant
topic. Merger-classifiers self-join these topics and combine
all possibilities. Thus, type-color, type-speed, color-speed,
and type-color-speed topics are formed. Therefore, when the
subscribers make a query, the system subscribes the user to
the relevant topic. All the messaging between the collabo-
rative filters are done by the publish-subscribe messaging
paradigm enabling persistent communication by using queue
structures.

The messaging protocol Apache Kafka a publish/subscribe
middleware system is realized by using Microservices and
containerization architectures for flexibility and scalability
features. Kafka publish-subscribe system acts as a central,
mission-critical nervous system. The realization of the sys-
tem function is divided into two steps. The first step is to
obtain vehicle information based on video automatically,
and the second step is to stream vehicle information to
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FIGURE 4. Diagram of proposed framework.

subscribers. Since our study includes two main modules as
classification and messaging system, these stages will be
explained under subheadings in this section.

A. VEHICLE TYPE CLASSIFICATION
In this paper, two different architecture used for type classi-
fication YOLOv4 [50] and tiny-YOLOv4. YOLO does the
feature extraction step by itself, which saves classification
systems from feature extraction steps. Also, it makes our sys-
tem robust against camera movement or changes in the envi-
ronment. Themost significant advantage of using YOLOv4 is
its excellent speed; it can process 45 frames per second.

The CNN family, one of the deep learning methods,
primarily uses regions to position objects within the image.

The network does not observe the whole image; it only
looks at parts of it that may have a higher chance of
containing a searched object. On the other hand, The
YOLOv4 framework takes the entire image in a single
instance. YOLOV4 estimates the bounding box coordinates
and their class probabilities.

The backbone is the first layer of YOLOv4, also known as
the feature-extraction process. We used two different back-
bone architectures. First is Tiny-YOLO, which consists of 9
convolutional layers. The second is Darknet53 consists of 53
convolutional layers.

To realize vehicle detection and classification based on
YOLO v4, the main steps are as follows.

• Data organization. All images manually labeled for the
data set to be trained inYOLOv4, ‘‘LabelImg’’ graphical
image annotation tool [51] used. Annotations are saved
in YOLO format.

• Parameter tuning and training of the YOLOv4 and
YOLOv4-tiny shown in table 1.

B. VEHICLE COLOR DETECTION
CNN, a popular Deep Learningmethod classifier usedmostly
to classify the objects based on the information of the shape.
We chose CNN, for color determination based on Alexnet

TABLE 1. Model parameters.

architecture. 8 different color class labels were created as
black, blue, cyan, gray, green, red, yellow, and white. The
model architecture is given in Figure 5 and Table 2. Our CNN
model consists of 5 convolutional, 5 max-pooling, 1 flatten,
6 drop out, and 3 dense layers. Mean square error for loss
function and Adam optimizer were used.

The loss function as shown in Eq. (1), ŷ is the predicted
value, y is the target and N is the sample number.

L(y, ŷ) =
1
N

N∑
i=1

(
y− ŷi

)2 (1)

C. VEHICLE SPEED DETECTION
Vehicle speed detection from a single camera is challenging
because the camera parameters such as angle, height, etc.,
may not be known, and determining them is difficult.

We made our calculations on a road whose distance is
known to solve the problem. To detect the speed of vehicles,
vehicle detection and tracking processes must be performed
first. The vehicle tracking process obtains the distance taken
by the vehicle, and also, we know that the rate of this value
with time gives us the speed of the vehicle. We used the
YOLOv4 algorithm to detect vehicles. Since no background
subtraction method is used during vehicle detection, vehicle
queues, slow traffic conditions, and long waiting times on the
road do not cause any problem for our work.
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FIGURE 5. CNN architecture for vehicle color detection.

TABLE 2. Model architecture.

Many algorithms proposed in the literature to follow mov-
ing objects in the video, called tracking algorithms. OpenCV
(Open Source Computer Vision), an open-source image pro-
cessing library, has been used in our work [52]. In OpenCV,
there are implementations for the tracking algorithms such as
Boosting [53], Goturn [54], KCF [55], MedianFlow [56],
and TLD [57]. MedianFlow algorithm is used in the project.
The MediaFlow algorithm treats the tracked object as a
bounding box and pops a new bounding box to track the
object in a new frame. Finally, vehicle speeds aremeasured by

comparing the bounding box trajectories surrounding vehi-
cles with real-world measurements.

We have defined the speed categories as follows 30-40,
40-50, 50-60, 60-70, 70-80, 80-90, and above 90 km/h.

D. HIERARCHICAL TOPIC BASED PUBLISH/SUBSCRIBE
MICROSERVICES
The publish/subscribe concept [58] is a communication
unit in a distributed system. The pub/sub messaging pat-
tern consists of publishers (producers) and subscribers
(consumers/clients). Unlike other messaging architectures,
in the pub/sub architecture, messages are not sent to specific
consumers. Instead, the messages post to specific categories
called topics without any information about the consumers.
Consumers likewise do not know anything about producers
and receive messages by subscribing to topics of interest.

Apache Kafka is a distributed, partitioned, replicated pub-
lish/subscribe system. Kafka maintains the real-time stream
of data in topics. Producers are the processes also as known
as publishers that publish messages to topics. Likewise, sub-
scribers are processes that read and process the messages
from topics by subscribing to them. Kafka runs as a cluster
and consists of one or more servers called brokers. Kafka
uses another server called Zookeeper to provide coordination,
management, and configuration for the brokers. We used
Docker technology to establish the microservice architecture.
It is known that there are different types of setups that provide
a platform for running applications: servers, virtual machines,
and Docker containers. Traditional servers have many disad-
vantages such as high cost, slow deployment time, complex
configuration, etc. Likewise, virtual machines also have neg-
ative aspects, problematic resource allocation, and complex
configurations. Docker uses OS-level virtualization to make
applications portable and isolates them by packaging them in
containers [59]. Kafka and Zookeeper were used to build the
Apache Kafka architecture using containers on the Docker.
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Communication of these two containers was achieved over
the port numbers specified with Docker Compose shown
in Table 3.

TABLE 3. Docker compose.

Considering the situation that partition and replication
units in Kafka architecture may affect performance, we chose
how many brokers, partitions, and replications we will use by
evaluating them according to the performance (Records/sec
(MB/sec) and Msgs/s(records/sec)) of the producer and the
consumer. Results are given in section 4.

Kafka serves as amicroservice and acts as a central nervous
system. Each topic represents a class.

• There are six classes of vehicles; auto, bus, truck, mini-
van, minibus, and sedan.

• Eight class of color, red, green, gray, black, white,
yellow, blue, and cyan

• Eight class of speed categories, below 30 km/h,
30-40, 40-50, 50-60, 60-70, 70-80, 80-90, and higher
than 90 km/h).

There are three layers in our architecture: classifiers, merg-
ers, and complex-mergers classifiers. These classifiers to
work together and publish data, ensured that they were first
informed of each other. Before Merger classifiers start work-
ing, they begin to wait for a signal to understand that the
previous layer’s classifiers are standing. Classifiers also send
the ack signal to the mergers. After receiving the ack signal,
merger servers start listening to the related topic. Algorithm 1
gives the pseudocode for listen-before-talk scheme between
microservices.

Figure 6 shows architecture for listen-before-talk scheme
between microservices.

Cameras start broadcasting after all servers send the ACK
signal. Each classifier creates the data structure called a
chunk. as shown Table 4.

As soon as the type classifier starts to receive images,
it starts to classify images according to the query’s incoming
search. In this chunk, data structure, camera id, frame number,
FPS information is kept and published to the relevant topical.

Algorithm 1 Architecture of Publish-Subscribe Framework
1 Publisher
2 If (is All Classifiers Available != True)
4 If (Classifier is Not Available)
5 send (CLASSIFIER_REQUEST)
6 else
7 send (CLASSIFIER _REQUEST_ACK)
8 If (Merger is Not Available)
9 send (MERGER_REQUEST)
10 else
11 send (MERGER_REQUEST_ACK)
12 If (Complex-Merger is Not Available)
13 send (CLASSIFIER_REQUEST)
14 else
15 send (MERGER_REQUEST_ACK)

TABLE 4. Data structure of activity descriptors.

It serves as metadata. At this point, Merger works as both a
consumer and a publisher.

The working order of the mergers is as follows:
• Type-Color Classifier: Color classification is performed
on the images taken from the type topic.

• Speed-Type Classifier: Type classification is performed
on vehicles whose speed is calculated.

• Speed-Color Classifier: Color classification is per-
formed on vehicles whose speed is calculated.

• Speed-Type-Color: The type and color of the vehicle is
performed on vehicles whose speed is calculated.

The classifier (node) in each layer works depending on
whether the previous layer’s classifier is alive. For a merger
node to publish data, the nodes that come before it must
be up and running. If a node is not alive, all nodes start to
listen to the Apache Kafka Broker port for the ACK sig-
nal. Here, we present the microservice algorithm that works
synchronously with each other. Algorithm 2 gives the pseu-
docode for collaborative working pub/sub system.

We designed the User Interface Monitor so that the pro-
posed system can be used by the end-user and monitor
the system status. With this application interface developed
using Javascript and HTML, information about the status
of the system is obtained, and the classified images can be
viewed. The Apache Kafka monitoring screenshot is given in
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FIGURE 6. Architecture of publish-subscribe framework.

Algorithm 2 Architecture of Publish-Subscribe Framework
Classifiers

1 If (is All Classifiers Available = True)
2 If (topic list = NULL)
3 then create topic for each classification node
4 end
5 Publish(Type-Classfication)
6 Publish(Color-Classfication)
7 Publish(Speed-Measurment)

Merger TC
8 Subscribe(Type)
9 Subscribe(Color)
10 Publish(TC)

Merger TS
11 Subscribe(Type)
12 Subscribe(Speed)
13 Publish(TS)

Merger CS
14 Subscribe(Color)
15 Subscribe(Speed)
16 Publish(CS)

Complex-Merger TCS
17 Subscribe(TC)
18 Subscribe(Speed)
19 Publish(TCS)

end if

figure 7 [60]. With this monitoring page, we were able to
keep information about the system’s performance as well as
its operation.

TABLE 5. YOLOV4, YOLOV4-Tiny performance and comparison different
approaches on bit-vehicle dataset.

V. EXPERIMENTAL RESULTS
All our experiments were performed on a machine with
Intel R©CoreTM i9-9900KF CPU @ 3.60GHz × 16, GeForce
RTX 2080 Ti/PCIe/SSE2, Ubuntu 18.04 OS. C++ was used
as the programming language.

A. EXPERIMENTAL ANALYSIS OF VEHICLE DETECTION
AND CLASSIFICATION
Intersection over Union (IOU), Average Precision, Recall,
and F-Score metrics used to measure the accuracy of the
model on the test dataset. Table 5 shows our test result for
YOLOv4, YOLOv4-Tiny and compared them with the model
results proposed by Sang et al. [61] and Sang et al. [62].
As shown in Table 5, we achieved higher AP of 98.39%
with YOLOv4-Tiny. Our model shows better performance
in all vehicle class of BIT-Vehicle Dataset. Table 6 shows
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FIGURE 7. Examples of UI monitoring system.

TABLE 6. Execution time for Yolov4, Yolov4-Tiny model for each frame.

Execution Time for Yolov4, Yolov4-Tiny Model for each
frame.

The performance results of YOLOV4 and Tiny-
YOLOV4 training completed up to 10000 epochs.

We achieved 98%Recall, 96% F1-score, and 86%Average
IoU scores with YOLOV4. We achieved 98% Recall, 96%
F1-score and 83.01% Average IoU scores with
Tiny-YOLOV4.

B. EXPERIMENTAL ANALYSIS OF VEHICLE COLOR
We used two different color spaces RGB and HSV tomeasure
the accuracy of the color model and to compare performance.
We divided our data set according to 80%-20% rates as
training and testing. Our input shape resized into 96 × 96 ×
3 resolution.

Table 7 shows our test result with RGB and HSV color
spaces and compared them with the model results pro-
posed by Chen et al. [48] and Rachmadi and Purnama [22].
We achieved a higher average accuracy of 0.9563%withHSV

TABLE 7. CNN performance on vehicle color [48].

color space. Our model shows better performance in Blue,
Cyan, Green, Red, and Yellow colors.

We achieved 0.9534 f1-score, 0.9554 precision and
0.9529 recall scores with RGB, and 0.9563 f1, 0.9575 pre-
cision and 0.9568 recall scores with HSV color spaces.

Table 8 shows the execution time for RGBCNNModel and
HSV CNN model for each frame.

C. EXPERIMENTAL ANALYSIS OF VEHICLE SPEED
DETECTION
Our system calculates speeds based on the tracking method.
With the data set, our system’s assumption is the known
distance between lines and fps values. Vehicle tracking is
performed in a known environment and reference range.
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FIGURE 8. Experiment results of producer packet throughput according to record numbers.

TABLE 8. Execution time for CNN model for each frame.

These reference points are 4.8 meters wide and 2.0 meters
high. The location of the vehicle is monitored with the
bounding box surrounding the vehicle. From the moment the
bounding box enters the reference area, time is kept, and
the average speed is calculated when the vehicle leaves the
area.

The speed measurement performance has been evaluated
by comparing calculated speed values with the ground truth.
According to the USA’s standards, a measurement should be
within the error range of minus 3 km/h,+plus 2 km/h. Results
are given in Table 9.

Average time for speed detection is 22.3 ms.

D. EXPERIMENTAL ANALYSIS OF APACHE KAFKA
In this section, it has been observed how the number
of partitions, replications, and brokers has an effect on
producer-send packet throughput (mb/sec). Graphs are given
in figure 8 shows that producer throughput varies depending
on the number of brokers, partitions of topics, and replica-
tions. It is observed that throughput results are better when
Partition is 2, Broker is 2 and Replication is 1.

Time calculations based on the production and consump-
tion of the messages are given in table 10 and figure 9.
In measuring these values, the tests were repeated ten times,
and the average results were obtained.

TABLE 9. Speed detection.

FIGURE 9. Apache kafka performance test.

VI. CONCLUSION
There are various studies about streaming data processing
using deep learning methods in the literature. However, most
of these studies focused on a single computer. We propose
a framework that tracking a specific vehicle over the video
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TABLE 10. Apahce kafka performance test.

streams published by the collaborating traffic surveillance
cameras in real-time. We transmitted data between microser-
vices among the network. Also, we enable the user to use text
queries among the video streams.

We discussed potential use cases for video retrieval in
mission-critical real-time applications leveraging Apache
Kafka with this framework. Kafka is a great complementary
tool for machine learning infrastructure andmay benefit areas
including inference of the analytic model in real-time, moni-
toring, and alerting.

In future studies, it is planned to add license plate recog-
nition among the attributes. Thus, developing more compre-
hensive smart traffic systems can contribute to smart and safe
city projects.
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